Transfer of Human Movements to Humanoid Robots

M. Do, P. Azad, T. Asfour, P. Pastor, D. Gehrig, H. Kühne, A. Wörner, T. Schultz, S. Schaal, R. Dillmann

> Universität Karlsruhe (TH) University of Southern California (USC)

1

Overview

- •Motivation
- •Human motion capture
- \bullet Transferring human motion data to Robot
	- –Master Motor Map
	- –**Optimization**
- • Action Representation
	- HMM
	- DMP
- •**Conclusions**

Motivation

- • In order to enable a humanoid to interact with humans andhuman-centered environments, incorporation of human motion is needed
- • Imitation of human motion is a promising way of intuitive programming of humanoid robots
- • Requirements for successful imitation
	- Human motion capture
	- Mapping to different embodiments with different kinematics
	- Action representation
- \bullet The goals is to have a humanoid robot which observes a human performing a specific task and reproduces the task

Framework overview

Framework overview

Human Motion Capture

- • Human motion is captured with optical systems
- • Two different model-based approaches:
	- Marker-based
	- Markerless
- Search for point correspondences between the model and the observedhuman motion
- \bullet • Joint angles are obtained from the model
- • Trajectory of a human movement is described as ^a sequence of joint angle configurations

Marker-based Human Motion Capture

- •Vicon System
- •Using 10 infrared cameras and reflective markers placed on the upper body
- Human Motion is captured with 100 Hz
- •Applicable in controlled environments

Markerless Human Motion Capture

- •Using the stereo vision system of the humanoid
- •Exploits an edge cue and a distance cue
- •Particle filter is exploited to track the human upper body
- •Human Motion is captured with 15 Hz

Forschungsuniversität · gegründet 1825

8

Comparison

Marker-based

- $+$ High accuracy
- $+$ High Resolution
- + Fast and robust

- −High Costs
- Complex handling and $\left| \begin{array}{ccc} + & \text{Freedom of movement} \end{array} \right|$ −preparation
- −Expensive post-processing
- −In controlled environments Table capture

Markerless

- h accuracy **Example 20** \vert Low accuracy -
	- -Low Resolution and Occlusion
	- Lower frame rates and sensitive to noise andenvironmental changes
	- + Low hardware costs
	- ----
	- $+$ $-$ Easy-to-use
	- +Natural way of human motion
	- $+$ Anywhere and on-site

Transferring human motion to Humanoid

- •Human motion data from various systems
- •Different robot platforms

How do we transfer human motion data ?

Transferring human motion to Humanoid (2)

Problems

- • Motion capture systems with specific models and different file formats
- •Various number of joints, which can be captured
- \bullet Different kinematic structures between the human model andthe Humanoid:
	- Reduction of joints
	- Joint constraints
	- Scaling

Instead of implementing an interface for each human motion capture system and a robot, we use the **Master Motor Map**

Framework overview

Master Motor Map

- Various human motion capture systems action recognition systems, imitation systems, visualization modules, and robot systems for reproduction \rightarrow Unified re presentation is needed!
- Interface for the transfer of motor knowledge between different embodiments: Master Motor Map (MMM)
- Specification of ^a reference kinematic model of the human body
	- 52+6 DoF \rightarrow does not limit any human motion capture system
	- Kinematics is similar to kinematics of humanoid robot systems
	- –File format is fully specified

Master Motor Map (2)

- Replacement of any module (perception, recognition, visualization, reproduction) can be guaranteed by using the MMM as the exchange format
	- All perceptive module convert their output to the MMM format
	- All recognition and reproduction modules convert the MMMformat to their specific internal representation

http://wwwiaim.ira.uka.de/users/asfour/mmm **(ICRA 2007)**

Master Motor Map (3)

- • Trajectory coming from the MMM interface has to be modified in order to:
	- Reproduce a movement on the robot similar to the observed human
	- Retain properties of a movement e.g goal-directedness
	- Prevent the robot of violating its joint constraints
- • Previous approaches
	- Exploit point correspondences between robot and human e.g. with physical markers
	- – Minimize the distance between joint angle configurations

configuration

Mapped on robot **without optimization**

Mapped on robot **with optimization**

Framework overview

Similarity as objective function for optimization

- • Two main features to determine the similarity between a robot configuration and a human configuration
	- Joint angles
	- Point correspondences
- By incorporating both, Similarity function *S* is defined:

$$
S(\mathbf{t}) = 2 - \frac{\frac{1}{n} \sum_{i=1}^{n} (\mathbf{t} - \mathbf{t})^2}{\pi^2} - \frac{\frac{1}{3} \sum_{i=1}^{3} (\hat{p_k} - p_k)^2}{(2 \cdot l_{arm})^2}
$$

with the TCP positions μ , $\bar{\nu}$, joint angle configurations $\bar{\mu}$, $\bar{\mu}$

• A solution, which minimizes *S* can be found by applying a non-linear optimization algorithm

Illustration of the parameters of the similarity function

Definition of the optimization problem

• Maximization of the similarity function can be described by the optimization problem:

$$
\min S'(\mathbf{U}) = 2 - S(\mathbf{U})
$$

subject to $C_{i_{min}} \leq \mathbf{U} \leq C_{i_{max}}$

- \bullet Levenberg-Marquardt algorithm fo r solving non-linea r least squares problems
	- Combination of Gauss -Newton and steepest descent method
	- Robust and fast convergence
	- Avoidance of local minima by starting optimization with the best initial candidates

Experimental platform: ARMAR-IIIb

- • Humanoid Robot withseven subs ystems:
	- −– Head (7 DoF)
	- −Right arm (7 DoF)
	- Left arm (7 DoF)
	- −Right hand (8 DoF)
	- −Left hand (8 DoF)
	- −Torso (3 DoF)
	- −Mobile platform
- Head equipped with a stereo camera system

Reproduction of human motion (1)

•**Marker-based**

- \bullet • Kitchen actions (here "Stirring") were recorded and reproduced in the ARMAR Simulation
- •• More joints can be controlled in simulation

Reproduction of human motion (2)

•**Markerless**

- • On-site capturing allows online imitation of observed human motion
- \bullet Less joints available

Further examples

•Reproduction of marker-based captured human motion data

•Reproduction of markerless captured human motion data

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825 Fakultät für Informatik

Humanoids 2008 1.12.2008

Action representation

- \bullet Hidden Markov models (HMM)
	- Extract key points (KP) in the demonstration
	- Determine key points that are common to all demonstrations (common key points: CKP)
	- Reproduction through interpolation between CKPs
- •• Dynamic movement primitives (Ijspeert, Nakanishi & Schaal, ²⁰⁰²)
	- Trajectory formulation using canonical systems of differential equations
	- Parameters are estimated using locally weighted regression

Action representation using HMMs

- • Continuous left-right HMMs are used to generalize movements from multiple demonstrations.
- \bullet HMMs are trained with key points of each demonstration
- Use HMMs to match ke y points across demonstrations
	- \rightarrow Common key points (CPK)
		- functions
		- Average of the timestamps
- • Movement representation through the resulting CKPs **COMPAN COMPANELY** Commen Key

Action representation using DMPs

- \bullet DMP: Dynamic movement primitives
- • Canonical system of differential equations for point to point movement
- \bullet 1D demonstration (green) and movement
1D demonstration (green) and
movement reproduction (blue) using
time a DMP
	- Approximation accuracy depends on the number of basis functions, the more basis functions, the less approximation error - thus, primitive movements can be arbitraril y approximation error - thus, primitive $\begin{array}{c} \left| \begin{array}{c} \Sigma \Sigma \ \Sigma \end{array} \right| \longrightarrow \ \mathbb{R}^n \end{array}$ approximation error - thus, primitive $\begin{array}{c} \left| \begin{array}{c} \Sigma \Sigma \ \Sigma \end{array} \right| \longrightarrow \mathbb{R}^n \end{array}$ time complex
	- Restricting the learning parameters defines the "length" of a primitive and $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 6 \\ 3 & 4 & 6 \\ 4 & 5 & 6 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 7 & 8 \\ 6 & 8 & 7 \\ 6 & 7 & 8 \\ 7 & 8 & 8 \\ 8 & 9 & 10 & 10 \\ 10 & 10 & 10 & 10 \\ 11 & 10 & 10 &$ trajectories

canonical system: $\tau \dot{u} = -\alpha u$ nonlinear function: $f(u) = \frac{\sum_i \psi_i(u) w_i u}{\sum_i \psi_i(u)}$ $\psi_i(u) = e^{-h_i(u - c_i)^2}$ transformation system: $\tau \dot{v} = K(g - x) - Dv + (g - x_0)f$ $\tau \dot{x} = v$

canonical system:
$$
\tau \dot{u} = -\alpha u
$$

\nnonlinear function: $f(u) = \frac{\sum_{i} \psi_i(u) w_i u}{\sum_{i} \psi_i(u)} \quad \psi_i(u) = e^{-h_i(u - c_i)^2}$

\ntransformation system: $\tau \dot{v} = K(g - x) - Dv + (g - x_0)f$

\n $\tau \dot{x} = v$

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

Trajectory Segmentation into DMPs

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

First implementation at USC

Joint work with Stefan Schaal and Peter Pastor

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

Humanoids 2008 1.12.2008

Conclusions

- •Implementation of first components of an imitation system
- •Various human motion capture system satisfying different needs according the task
- \bullet Transferring different human motion data to the robot using the Master Motor Map
- • Reproduction of human-like motion and goal-directedness retained using non-linear optimization
- \bullet Action representation using Hidden Markov Models and Dynamic Movement Primitives

... for your attention.

- • This work has been conducted within:
	- – the German Humanoid Research project SFB588 funded by the German Research Foundation (DFG) www.sfb588.uni-karlsruhe.de
	- –– the EU Cognitive Systems project PACO-PLUS funded by the European Commission www.paco-plus.org
	- –- the EU Cognitive Systems project GRASP funded by the European Commission www.grasp-project.eu

